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Relation between classical and quantum particle systems
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An exact correspondence is established betwelrbady classical interacting system andM— 1)-body
gquantum system with respect to the partition function. The resulting Hermitian quantum potentiaNis a (
—1)-body one. Inversely the Kelbg potential is reproduced which describes quantum systems at a quasi-
classical level. The correspondence found between classical and quantum systems allows also to approximate
dense classical many-body systems by lower order quantum perturbation theory, replacing Planck’s constant
properly by temperature and density dependent expressions. As an example, the dynamical behavior of a
one-component plasma is well reproduced concerning the formation of correlation energy after a disturbance,
utilizing solely the analytical quantum-Born result for dense degenerated Fermi systems. As a practical guide,
the quantum-Bruckner parameterhas been replaced by the classical plasma parafietesr ;~0.3%?.
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Several hints in the recent literature conjecture that theréody quantum system is described by the classical system.
exists a correspondence between quantum systems adAd example is the Kelbg potential for Coulomb systems
higher dimensional classical systems. The authors of[Rgf. [5—8],
argue that a higher dimensional classical non-Abelian gauge ee . ;
theory leads to a lower dimensional quantum field theory in Viebg(py = 220 e Py [ —erf —” 2
the sense of chaotic quantization. The correspondence ap- r | |
pears by quating 'Fhe temperature Char.acterizing chaotizgz, 12=#2/2T and 1f=1/m, + 1/m, describing the two-
tion of the higher dimensional system withof the lower  aricle quantum Slater sum correctly by a classical system.
dimensional system by Improvements and systematic applications can be found in

Refs.[9-11].
h—aT 1) Here in this paper we show that a classid&particle
system can be mapped exactly on a quantiin () -particle
system with respect to the partition function. Though the
Recalling the imaginary time evolution as a method to cal+esulting effective l—1)-body quantum potential is highly
culate correlated systems in equilibrium such corresponcomplex, it can lead to practical applications for approximat-
dence seems suggestible. We will find a similar relation as &9 strongly correlated classical systems. In the thermody-
best fit of quantum-Born calculations to dense interactinghamical limit it means that the dense classical system can be
classical systems. described alternatively by a quantum system with properly

In condensed matter physics it is a commonly used trickchosen potential.
to map a two-dimensional classical spin system onto a one- This finding suggests that the quantum calculation in low-
dimensional quantum systef2]. This suggests that there €st order perturbation might be suitable to derive good ap-
might exist a general relation between quantum and highgproximations for the dense classical system. This is also mo-
dimensional classical systems. We will show that a classicdivated by an intuitive picture. Assume that we have a dense
many body system can be equally described by a quanturfiteracting classical plasma system. Then the correlations
system with one particle less in the system but with thewill considerably restrict the possible phase space for travel-
price of complicated nonlocal potential. This can be considing of one particle like in dense Fermi systems at low tem-
ered analogously to the Bohm interpretation of quantunperatures where the Pauli exclusion principle restricts the
mechanics[3] where the Schidger equation is rewritten Pphase space for scattering. Therefore we might be able to
in a Hamilton-Jacobi equation but with a nonlocal quantumdescribe a dense interacting classical system by a perturba-
potential. tive quantum calculation when we properly replaiceby

Another hint towards a correspondence between classicalensity and temperature expressions. Indeed we will demon-
and quantum systems was found recently in Réfwhere it ~ strate in a one-component plasma system that even the time
was achieved to define a Lyapunov exponent in quantur@volution and dynamics of a very strongly correlated classi-
mechanics by employing the marginal distribution which is acal system can be properly approximated by quantum-Born
representation of Wigner function in a higher dimensionalcalculations.
space. Since the Lyapunov exponent is essentially a concept Let us now derive the equivalence between classical and
borrowed from classical physics, this finding points also inquantum systems by rewriting the classitaparticle con-
the direction that there exists a correspondence betwediguration integral

guantum systems and higher dimensional classical systems. N
On the opposite side there are systematic derivations of :f dx.- - - dx 1+f.. 3
constructing effective classical potentials such that the many Qn(A) ! Niﬂj ( i) &
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wheref;; =exd — Bu;j(x—X)]—1 are the Meyer graphs with (Xqig- - Xn—gin—1]U[Xq0 0 X qi 1)
the interaction potential;; (x;—x;) of the classical particles
and the inverse temperatuge The subscripts ii;; denote =eﬁ’[ulz(><rx1>+"'+U1N(X1*XN71)1Q(S(x1—x§)
the coupling constants like charges, etc. Consider now the )
modified configuration integral X B(XN—2 = XN=1) Gir iy B iy
Qn(B)=Qn(28) (10)
=f dxq- - dxydXg- - dXG_ 10X = X]) - - S(Xn—1—XN—1) Here () is an arbitrary energy density setting up the energy
scale. The resulting Hermitian quantum potentitd) is a
X(L+T)(1+F19(1+F 1) - (L+T1y) (N—1)-body nonlocal potential with respect to the coordi-

nates but depends dN strength function parametée.g.,
chargeg Therefore we have cast a classibebody problem
X (L4 fpg ) (L4 Fao ) (A4 Fyz) - - (1+Fynetr), (4) into a nonlocal quantumN—1)-body problem.
While the above correspondence holds for any particle
such that a quadratic schema in the indices appears. Now wwimber and might be useful to find solvable models for clas-
assume a complete set ol 1) particle wave functions sical three-body problems, we will consider many-body sys-

X(1+Fo0 ) (14T (1+To0) - (L4Ton) - -

\Ian_l such that tems in the following. First let us invert the problem and
search for an effective classical potential approximating
S(Xy—X}) -+ - S(Xn—1—Xly_1) quantum systems. This should lead us to the known Kelbg-

potential(2). For this purpose we assume a quantum system
= S W X X)W (Xge Xt ) described in lowest approximation by a Slater determinant or
Sy N T INT L R g ERL N a complete factorization of the many-body wave function

with “quantum numbers?i} characterizing the state. Further Into a single wave functioV; ..i\ Xy~ -Xn) = i« i

we propose the following eigenvalue problem defining theFor si.mplicity, we neglect.the gxchange correlgtions_in the
wave function: following. The corresponding eigenvalue equation §oiit-

self one can obtain from Eq&5) or (9) by multiplying with

N W iy (X2 -Xn-1) and integrating oveky: - -Xy-1. TO
Xm,Hz (I+f)Wi iy, (Xa - Xn-1) see the generic structure more clearly we better calculate the

= correlation energy by multiplying Eq(6) or Eq. (9) by
=Ve iy i (X Xy), (6) \P;;-~-iN,1i1(X2"'XN) and integrating ovex,- - -Xy. This

provides also the eigenvalug;, and leads us easily to the
with the system volume/. This allows us to calculate the approximations for the partition functigi3). To demonstrate
configurational integraf4) exactly by successively integrat- this we choose the lowest order approximation taking iden-
ing X4 - - - Xy, With the result tical plane waves fokp. Then the pressure can be obtained
from the partition functiorQy via (7)
Qup)=VN > e Mo, (7)
1" "IN—-1
9 [N N(N-2) B2
This already establishes the proof that we can map a classical P_TWm Qn=T v V2 f dr(e ),
N-body system on aN— 1)-body quantum system since Eq. (12
(6) is the eigenvalue problem of & 1)-body Schrdinger
equation. To see this we can consider a wave funcfibailt

from the Fourier transform o¥, whereV is the volume of the system. We recognize the stan-
dard second virial coefficient for small potentials while for
P (N1 p? higher order potential the factor 1/2 appears in the exponent
&py- - Pn_1ob) =ex;{ — _< E _t EN—l) t} instead as a prefactor indicating a different partial summation
A\ =1 2m, of diagrams due to the different schema behind Efsand
~ 9.
XWi iy (Pre e Ph-1), (8) To go beyond the plane wave approximation we multiply

Eqg. (6) by \I,i*Z"'iNflil(Xz. --Xy) and the kinetic part of the
statistical operator before integrating oves- - -xy. This
means we create an integral over tie-1 particle density
operator and the potentiél0) which together represents the
correlation energy. This expression is a successive convolu-
tion between the cluster grapHg and the relative two-
with Ey_,=QVe il and we rewrote the left hand side of Particle correlation functiop; ; (x;—x,). The resulting cor-

Eq. (6) as quantum potential relation energy density reads

which obeys the \l— 1)-particle Schrdinger equation

(- 9 N—-1 pl2

Iha_Ei Z_rm_tJ)g(pl'”pN—llt):Ol (9)
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U_E fdyl"'dle -0.25
Vo yN-1 -05
-0.75
Xpiyi,(YOPii(Y2) - piy i, (Yn-D[ 1= F1ay1)] N
() -
X[L=Fix(yitya) ] - [1=Fan(yst - +yn-1)] €2 _125 - | V2 (Kelbg )
dy dy 15 ‘/tln[1+‘/5] - -~V
1" N—-1 n
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12
12 FIG. 1. The comparison of the Kelbg potent{g) and the third

in dimensionless units where all other cluster expansiorrder potential16) vsr/l.
terms lead either to lower mean field or disconnected terms.
While these terms can also be calculated we restrict to the We now want to proceed to a phenomenological level in
highest order convolutions in the correlation enefd®) that the above correspondence between quantum and classi-
which indeed have the structure of a correlation energyal systems motivates us to find good approximations even
u/v= i, S(dx/V) piliz(x)vf‘;f with the classical effective for the dynamics of classical many-body systems by employ-
potentials ing quantum-Born approximations. This can be understood
by the fact that the Kelbg potential deviates appreciably from
off dx, the Coulomb one, only if the interparticle distandeis

\Z (r)"‘; f v PX)UsX)Uzg(X1+1), (13 smaller than the thermal wavelength In other words, for
dense classical systems under such conditions we can think
of it as a dilute quantum system replacing-d. To check
this conjecture let us consider a one-component plasma
which is characterized by two values. The classical coupling
X P23 Xo)Uga(Xy +Xo+T), (14 s described by the plasma paramdier e?/d T, as a ratio of
the length where Coulomb energy becomes larger than ki-
netic energy,e?/T, to the interparticle distance or Wigner
size radiusd=(3/4mwn)'3. Ideal plasmas are found fdr
<1 while aroundI’=1 nonideal effects become important.
A second parameter which controls the quantum features is
the Bruckner parameter as the ratio of the Wigner size radius
to the Bohr radiusig=7%2/me?. Quantum effects will play a
(15 role if rg<1. We will consider the situation where the inter-
action of such a system is switched on at the initial time.
Then the correlations are formed by the system which is seen
in an increase of temperature accompanied by the buildup of
negative correlation energy. This theoretical experiment has
been investigated numerically by REf2] for classical plas-

dx;dx
V?(f)@% f%plz(xl)uﬂ(xl)ulli(xl—’—XZ)

according to the two particle, three particle, etc., approxima
tion read off from Eq(12). In equilibrium the nondegenerate
correlation function readd >=%2/ uT=\?/21]

—r?)2

dp | p?
piliz(xl_XZ)ZJ (zﬂ_h)?,elpr/h)\gex[(_ﬂm)ze

Using the Coulomb potential« 1/r we obtain from the two-
particle approximatioril3) just the Kelbg potentiaf2). The
three-particle approximatiofil4) can be calculated as well
and readgx=r/l]

1 X 2302y rudly 2 7 mas with different plasma parametér
vefie Dl e — |+ ——| Zexd — —|erfl — In Refs.[13,14] we have calculated the formation of such
3 2 . . . . . .
X V2 v Jx Z V2 correlations by using quantum kinetic equations in Born ap-

(16)  proximation. The time dependence of kinetic energy was

. - found at short times to be
The third order potential is somewhat less bound than the

Kelbg potential as can be seen in Fig. 1. With the schema

(14) one can easily integrate higher order approximations as l—cos{im ]
successive convolutions, but with respect to the small differ- dkdpdq , noF

ences between Eg&) and(16) in Fig. 1 one does not ex- Econ= —% f (27h)° D Ag

pect much change. Also, in principle the degenerate case

could be calculated using Fermi-Dirac distributions in Eq. X (1= )(1—fy), a7

(15). But one should then consider also the neglected ex-

change correlations during factorizationBfas well. Let us  \\heref are the initial distributions and
summarize that the known effective classical potential de-

scribing a quantum system in binary approximation has been K2 2 (k—q)? (p+q)?
recovered by identifying the effective two-particle interac- Ag= + P~ @” (P79 _
tion within the correlation energy. 2m, 2m,  2m, 2m,
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The statical screened Coulomb interaction &(q)
=4me?h?/(q°+#h%k?). The inverse screening length is -
given byx?=4me?n/T for the high or byx?=6me?n/e; for

the low temperature limit in terms of the densityand the
temperaturd. For both the cases, dynamical as well as stati-
cal screening, it was possible to integrate analytically thes
time dependent correlation energl7). This has allowed to .}
describe the time dependence of simulations in the weal
coupling limit I'<<1 appropriately[13]. For stronger cou-
pling I'=1 the Born approximation fails since the exact cor-
relation energy of simulation is lower than the first order . . . . . .
(Born) result ke/2T=/3/2I'¥2. Moreover, there appear ° ! : Vizwey) ' * ¢ !
typical oscillations, see Fig. 2. ) ) )

Now we employ the ideas developed above and use the FIG. 2. The time eyolutlon pfacla§3|cal one-component plasma
quantum-Born approximations in the strongly degenerate@ter sudden switching of interactiofl2] compared to the
case to describe the classical strongly correlated system. F antum-Born result when th.e Br“Ck.n.er. parameter Is replaced ac-

- cording to Eq.(19). The long time equilibrium value is remarkably
strongly degenerated plasmas the time dependence of corré-

. . - - ell reproduced by the quantum-Born resis).
lation energy was possible to integrate as well with the resull’

[14] expressed here in terms of plasma paraméteand
quantum Bruckner parametey as

—— Simulation I'=10
----- Quantum Born r, ~ T*?

nT)

Using the thermal de Broglie wavelengitf=7%2%/4mT we
can rewrite Eq(19) as\?~ d/k = d?/(3T')*2. In the con-

- o 3, sidered range of'=1,...,10 wehave (T)¥4=1,...,2
Ecor(t) ~ Ecor( D) _ 1 r_s( siny7 1) and the thermal wavelengthis found to be nearly equal to
nT (36rHVe I' | yr the interparticle distance as a best fit of the quantum-Born
calculation to the dense classical system. This is exactly the
« 1 arcta rﬁ 1 N 1 18) distance where the Kelbg potentidld) or (2) starts to devi-
b, b)) " bf+b}| ate from the Coulomb potential. In other words we confirm

the conjecture that the dense classical system can be de-
with b= #«/2p;= \T1(487%)"® yr=4¢t/h  scribed by a dilute quantum system if in the latter the thermal
= (2)*37533%%7/ /r , where the time is scaled in plasma pe- wavelength is replaced by the interparticle distance. This
riods 7=2mt/w,. Now we fit this quantum result to the condition (19) can also be rewritten into the resuft) of
simulation using the Bruckner parameter as a free parametditerature using the degenerated screening length.

For the available simulations betweesT <10 we obtain a We summarize that in equilibrium we have shown that
best fit there exists an exact relation betweeN-hody classical sys-
tem and a - 1)-body quantum system. This has allowed to
fit \[ 3/ recover the quantum Kelbg potential more easily. As a prac-
s =C §F , ¢~05 19 fical consequence | suggest to describe the dynamics of

dense interacting classical many-body systems by the sim-
The quality of this fit is illustrated in Fig. 2 which is through- pler perturbative quantum calculation in the degenerate limit,
out the range £1'<10. This is quite astonishing since not properly replacing: by typical classical parameters of the
only is the correct classical correlation enefd$] described system.
but also the correct time dependence, i.e., dynamics. Let us | would like to thank S. G. Chung for numerous discus-
try to understand what this phenomenological finding meanssions and valuable hints.
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