
PHYSICAL REVIEW E 66, 022103 ~2002!
Relation between classical and quantum particle systems

Klaus Morawetz
Max-Planck-Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden, Germany

~Received 15 November 2001; published 27 August 2002!

An exact correspondence is established between aN-body classical interacting system and a (N21)-body
quantum system with respect to the partition function. The resulting Hermitian quantum potential is a (N
21)-body one. Inversely the Kelbg potential is reproduced which describes quantum systems at a quasi-
classical level. The correspondence found between classical and quantum systems allows also to approximate
dense classical many-body systems by lower order quantum perturbation theory, replacing Planck’s constant
properly by temperature and density dependent expressions. As an example, the dynamical behavior of a
one-component plasma is well reproduced concerning the formation of correlation energy after a disturbance,
utilizing solely the analytical quantum-Born result for dense degenerated Fermi systems. As a practical guide,
the quantum-Bruckner parameterr s has been replaced by the classical plasma parameterG as r s'0.3G3/2.
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Several hints in the recent literature conjecture that th
exists a correspondence between quantum systems
higher dimensional classical systems. The authors of Ref@1#
argue that a higher dimensional classical non-Abelian ga
theory leads to a lower dimensional quantum field theory
the sense of chaotic quantization. The correspondence
pears by equating the temperature characterizing chao
tion of the higher dimensional system with\ of the lower
dimensional system by

\5aT. ~1!

Recalling the imaginary time evolution as a method to c
culate correlated systems in equilibrium such corresp
dence seems suggestible. We will find a similar relation a
best fit of quantum-Born calculations to dense interact
classical systems.

In condensed matter physics it is a commonly used tr
to map a two-dimensional classical spin system onto a o
dimensional quantum system@2#. This suggests that ther
might exist a general relation between quantum and hig
dimensional classical systems. We will show that a class
many body system can be equally described by a quan
system with one particle less in the system but with
price of complicated nonlocal potential. This can be cons
ered analogously to the Bohm interpretation of quant
mechanics@3# where the Schrd¨inger equation is rewritten
in a Hamilton-Jacobi equation but with a nonlocal quant
potential.

Another hint towards a correspondence between class
and quantum systems was found recently in Ref.@4# where it
was achieved to define a Lyapunov exponent in quan
mechanics by employing the marginal distribution which i
representation of Wigner function in a higher dimensio
space. Since the Lyapunov exponent is essentially a con
borrowed from classical physics, this finding points also
the direction that there exists a correspondence betw
quantum systems and higher dimensional classical syste

On the opposite side there are systematic derivation
constructing effective classical potentials such that the m
1063-651X/2002/66~2!/022103~4!/$20.00 66 0221
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body quantum system is described by the classical sys
An example is the Kelbg potential for Coulomb system
@5–8#,

V12
Kelbg~r !5

e1e2

r F12e2r 2/ l 21Ap
r

l
erfcS r

l D G , ~2!

with l 25\2/2mT and 1/m51/m111/m2 describing the two-
particle quantum Slater sum correctly by a classical syst
Improvements and systematic applications can be found
Refs.@9–11#.

Here in this paper we show that a classicalN-particle
system can be mapped exactly on a quantum (N21)-particle
system with respect to the partition function. Though t
resulting effective (N21)-body quantum potential is highly
complex, it can lead to practical applications for approxim
ing strongly correlated classical systems. In the thermo
namical limit it means that the dense classical system can
described alternatively by a quantum system with prope
chosen potential.

This finding suggests that the quantum calculation in lo
est order perturbation might be suitable to derive good
proximations for the dense classical system. This is also
tivated by an intuitive picture. Assume that we have a de
interacting classical plasma system. Then the correlati
will considerably restrict the possible phase space for tra
ing of one particle like in dense Fermi systems at low te
peratures where the Pauli exclusion principle restricts
phase space for scattering. Therefore we might be abl
describe a dense interacting classical system by a pertu
tive quantum calculation when we properly replace\ by
density and temperature expressions. Indeed we will dem
strate in a one-component plasma system that even the
evolution and dynamics of a very strongly correlated clas
cal system can be properly approximated by quantum-B
calculations.

Let us now derive the equivalence between classical
quantum systems by rewriting the classicalN-particle con-
figuration integral

QN~b!5E dx1•••dxN)
i , j

N

~11 f i j !, ~3!
©2002 The American Physical Society03-1
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where f i j 5exp@2buij(xi2xj)#21 are the Meyer graphs with
the interaction potentialui j (xi2xj ) of the classical particles
and the inverse temperatureb. The subscripts inui j denote
the coupling constants like charges, etc. Consider now
modified configuration integral

Q̃N~b!5QN~2b!

5E dx1•••dxNdx18•••dxN218 d~x12x18!•••d~xN212xN218 !

3~11 f 12!~11 f 13!~11 f 14!•••~11 f 1N!

3~11 f 218!~11 f 23!~11 f 24!•••~11 f 2N!•••

3~11 f N18!~11 f N28!~11 f N38!•••~11 f NN218!, ~4!

such that a quadratic schema in the indices appears. Now
assume a complete set of (N21) particle wave functions
CnN21

such that

d~x12x18!•••d~xN212xN218 !

5 (
i 1••• i N21

C i 1••• i N21
* ~x18•••xN218 !C i 1••• i N21

~x1•••xN21!, ~5!

with ‘‘quantum numbers’’$i% characterizing the state. Furthe
we propose the following eigenvalue problem defining
wave function:

E dx1)
j 52

N

~11 f 1 j !C i 1••• i N21
~x1•••xN21!

5Ve2«$ i %C i 2••• i N21i 1
~x2•••xN!, ~6!

with the system volumeV. This allows us to calculate th
configurational integral~4! exactly by successively integra
ing x1•••xN , with the result

Q̃N~b!5VN (
i 1••• i N21

e2N«$ i %. ~7!

This already establishes the proof that we can map a clas
N-body system on a (N21)-body quantum system since E
~6! is the eigenvalue problem of a (N21)-body Schro¨dinger
equation. To see this we can consider a wave functionj built
from the Fourier transform ofC,

j~p1•••pN21 ,t !5expF2
i

\S (
i 51

N21 pi
2

2mi
2EN21D tG

3C̃ i 1••• i N21
~p1•••pN21!, ~8!

which obeys the (N21)-particle Schro¨dinger equation

S i\
]

]t
2 (

i

N21 pi
2

2mi
2Ũ D j~p1•••pN21 ,t !50, ~9!

with EN215VVe2«$ i % and we rewrote the left hand side o
Eq. ~6! as quantum potential
02210
e

we

e

cal

^x1i 1•••xN21i N21uUux18i 18•••xN218 i N218 &

5eb[u12(x182x1)1•••1u1N(x182xN21)]Vd~x12x28!

3•••d~xN222xN218 !d i
18 ,i 1

•••d i
N218 ,i N21

.

~10!

HereV is an arbitrary energy density setting up the ene
scale. The resulting Hermitian quantum potential~10! is a
(N21)-body nonlocal potential with respect to the coord
nates but depends onN strength function parameter~e.g.,
charges!. Therefore we have cast a classicalN-body problem
into a nonlocal quantum (N21)-body problem.

While the above correspondence holds for any part
number and might be useful to find solvable models for cl
sical three-body problems, we will consider many-body s
tems in the following. First let us invert the problem an
search for an effective classical potential approximat
quantum systems. This should lead us to the known Kel
potential~2!. For this purpose we assume a quantum sys
described in lowest approximation by a Slater determinan
a complete factorization of the many-body wave functi
into a single wave functionC i 1••• i N

(x1•••xN)5f i 1
•••f i N

.
For simplicity, we neglect the exchange correlations in
following. The corresponding eigenvalue equation forf it-
self one can obtain from Eqs.~6! or ~9! by multiplying with
C i 2••• i N21

* (x2•••xN21) and integrating overx2•••xN21. To

see the generic structure more clearly we better calculate
correlation energy by multiplying Eq.~6! or Eq. ~9! by
C i 2••• i N21i 1

* (x2•••xN) and integrating overx2•••xN . This

provides also the eigenvaluee$ i % and leads us easily to th
approximations for the partition function~3!. To demonstrate
this we choose the lowest order approximation taking id
tical plane waves forf. Then the pressure can be obtain
from the partition functionQN via ~7!

P5T
]

]V
ln QN5TS N

V
2

N~N22!

V2 E dr~e2bu(r )/221! D ,

~11!

whereV is the volume of the system. We recognize the st
dard second virial coefficient for small potentials while f
higher order potential the factor 1/2 appears in the expon
instead as a prefactor indicating a different partial summa
of diagrams due to the different schema behind Eqs.~7! and
~9!.

To go beyond the plane wave approximation we multip
Eq. ~6! by C i 2••• i N21i 1

* (x2•••xN) and the kinetic part of the

statistical operator before integrating overx2•••xN . This
means we create an integral over theN21 particle density
operator and the potential~10! which together represents th
correlation energy. This expression is a successive conv
tion between the cluster graphsf i j and the relative two-
particle correlation functionr i 1i 2

(x12x2). The resulting cor-
relation energy density reads
3-2
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U

V
5(

$ i %
E dy1•••dyN21

VN21

3r i 1i 2
~y1!r i 2i 3

~y2!•••r i N21i 1
~yN21!@12 f 12~y1!#

3@12 f 13~y11y2!#•••@12 f 1N~y11•••1yN21!#

'(
$ i }

E dy1•••dyN21

VN21
r i 1i 2

~y1!•••r i N21i 1
~yN21!

3u12~y1!u13~y11y2!•••u1N~y11•••1yN21!1•••

~12!

in dimensionless units where all other cluster expans
terms lead either to lower mean field or disconnected ter
While these terms can also be calculated we restrict to
highest order convolutions in the correlation energy~12!
which indeed have the structure of a correlation ene
U/V5( i 1i 2

*(dx/V)r i 1i 2
(x)V12

eff with the classical effective
potentials

V2
eff~r !}(

3
E dx1

V
r12~x1!u12~x1!u23~x11r !, ~13!

V3
eff~r !}(

34
E dx1dx2

V2 r12~x1!u12~x1!u13~x11x2!

3r23~x2!u34~x11x21r !, ~14!

according to the two particle, three particle, etc., approxim
tion read off from Eq.~12!. In equilibrium the nondegenerat
correlation function reads@ l 25\2/mT5l2/2p#

r i 1i 2
~x12x2!5E dp

~2p\!3 eipr /\l3expS 2b
p2

2m D5e2r 2/ l 2.

~15!

Using the Coulomb potentialu}1/r we obtain from the two-
particle approximation~13! just the Kelbg potential~2!. The
three-particle approximation~14! can be calculated as we
and reads@x5r / l #

V3
eff;

1

x Ferf2S x

A2
D 1

23/2x

Ap
E

x

`dz

z
expS 2

z2

2 DerfS z

A2
D G .

~16!

The third order potential is somewhat less bound than
Kelbg potential as can be seen in Fig. 1. With the sche
~14! one can easily integrate higher order approximations
successive convolutions, but with respect to the small dif
ences between Eqs.~2! and ~16! in Fig. 1 one does not ex
pect much change. Also, in principle the degenerate c
could be calculated using Fermi-Dirac distributions in E
~15!. But one should then consider also the neglected
change correlations during factorization ofC as well. Let us
summarize that the known effective classical potential
scribing a quantum system in binary approximation has b
recovered by identifying the effective two-particle intera
tion within the correlation energy.
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We now want to proceed to a phenomenological level
that the above correspondence between quantum and c
cal systems motivates us to find good approximations e
for the dynamics of classical many-body systems by empl
ing quantum-Born approximations. This can be understo
by the fact that the Kelbg potential deviates appreciably fr
the Coulomb one, only if the interparticle distanced is
smaller than the thermal wavelengthl. In other words, for
dense classical systems under such conditions we can t
of it as a dilute quantum system replacingl;d. To check
this conjecture let us consider a one-component plas
which is characterized by two values. The classical coupl
is described by the plasma parameterG5e2/dT, as a ratio of
the length where Coulomb energy becomes larger than
netic energy,e2/T, to the interparticle distance or Wigne
size radiusd5(3/4pn)1/3. Ideal plasmas are found forG
!1 while aroundG51 nonideal effects become importan
A second parameter which controls the quantum feature
the Bruckner parameter as the ratio of the Wigner size rad
to the Bohr radiusaB5\2/me2. Quantum effects will play a
role if r s<1. We will consider the situation where the inte
action of such a system is switched on at the initial tim
Then the correlations are formed by the system which is s
in an increase of temperature accompanied by the buildu
negative correlation energy. This theoretical experiment
been investigated numerically by Ref.@12# for classical plas-
mas with different plasma parameterG.

In Refs.@13,14# we have calculated the formation of suc
correlations by using quantum kinetic equations in Born
proximation. The time dependence of kinetic energy w
found at short times to be

Ecorr52(
ab

E dk dp dq

~2p\!9
VD

2

12cosH 1

\
tDEJ

DE

3 f a8 f b8~12 f a!~12 f b!, ~17!

wheref are the initial distributions and

DE5
k2

2ma
1

p2

2mb
2

~k2q!2

2ma
2

~p1q!2

2mb
.

FIG. 1. The comparison of the Kelbg potential~2! and the third
order potential~16! vs r / l .
3-3
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The statical screened Coulomb interaction isVD(q)
54pe2\2/(q21\2k2). The inverse screening length
given byk254pe2n/T for the high or byk256pe2n/e f for
the low temperature limit in terms of the densityn and the
temperatureT. For both the cases, dynamical as well as st
cal screening, it was possible to integrate analytically
time dependent correlation energy~17!. This has allowed to
describe the time dependence of simulations in the w
coupling limit G,1 appropriately@13#. For stronger cou-
pling G>1 the Born approximation fails since the exact co
relation energy of simulation is lower than the first ord
~Born! result ke2/2T5A3/2G3/2. Moreover, there appea
typical oscillations, see Fig. 2.

Now we employ the ideas developed above and use
quantum-Born approximations in the strongly degenera
case to describe the classical strongly correlated system
strongly degenerated plasmas the time dependence of c
lation energy was possible to integrate as well with the re
@14# expressed here in terms of plasma parameterG and
quantum Bruckner parameterr s as

Ecorr
T ~ t !2Ecorr

0 ~ t !

nT
5

1

~36p4!1/6

r s
3

G S sinyt

yt
21D

3F 1

bl
arctanS 1

bl
D1

1

bl
21bl

4G , ~18!

with bl5\k/2pf5AG/(48p2)1/6, yt54e f t/\
5(2)4/3p5/335/6t/Ar s where the time is scaled in plasma p
riods t52pt/vp . Now we fit this quantum result to th
simulation using the Bruckner parameter as a free param
For the available simulations between 1<G<10 we obtain a
best fit

r s
fit5cA3

8
G3/2, c'0.5. ~19!

The quality of this fit is illustrated in Fig. 2 which is through
out the range 1<G<10. This is quite astonishing since n
only is the correct classical correlation energy@15# described
but also the correct time dependence, i.e., dynamics. Le
try to understand what this phenomenological finding mea
e
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Using the thermal de Broglie wavelengthl25\2/4mT we
can rewrite Eq.~19! as l2' d/k 5 d2/(3G)1/2. In the con-
sidered range ofG51, . . . ,10 wehave (3G)1/451, . . . ,2
and the thermal wavelengthl is found to be nearly equal to
the interparticle distanced as a best fit of the quantum-Bor
calculation to the dense classical system. This is exactly
distance where the Kelbg potential~13! or ~2! starts to devi-
ate from the Coulomb potential. In other words we confi
the conjecture that the dense classical system can be
scribed by a dilute quantum system if in the latter the therm
wavelength is replaced by the interparticle distance. T
condition ~19! can also be rewritten into the result~1! of
literature using the degenerated screening length.

We summarize that in equilibrium we have shown th
there exists an exact relation between aN-body classical sys-
tem and a (N21)-body quantum system. This has allowed
recover the quantum Kelbg potential more easily. As a pr
tical consequence I suggest to describe the dynamics
dense interacting classical many-body systems by the s
pler perturbative quantum calculation in the degenerate lim
properly replacing\ by typical classical parameters of th
system.

I would like to thank S. G. Chung for numerous discu
sions and valuable hints.

FIG. 2. The time evolution of a classical one-component plas
after sudden switching of interaction@12# compared to the
quantum-Born result when the Bruckner parameter is replaced
cording to Eq.~19!. The long time equilibrium value is remarkabl
well reproduced by the quantum-Born result~18!.
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